17C Laboratory & Professional Skills: Data Analysis

Laboratory & Professional skills for Bioscientists Term 2: Data Analysis in R

More than one explanatory variable: Two-way ANOVA

Summary of this week

- Two-way ANOVA for more than one explanatory variable
 - Comparing to one-way
 - Rationale
 - The 3 null hypotheses
 - Running and interpreting the test
 - Understanding the interaction
 - Investigating the assumptions
 - Reporting the result

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain the rationale behind ANOVA and complete a partially filled ANOVA table (MLO 1 and 4)
- Read in data formatted for other statistical packages (MLO 3)
- Apply (appropriately), interpret and evaluate the legitimacy of, two-way ANOVA in R (MLO 2, 3 and 4)
- Explain the meaning of a significant interaction (MLO 4)
- Summarise and illustrate with appropriate figures test results scientifically (MLO 3 and 4)
- Use RStudio projects (MLO 4)

Revision (Lectures 6 and 7) Choosing tests Steps - iterative

- Identify explanatory and response variables.
- The type of test depends on the type of type of data.
 - Categorical explanatory
 - Continuous response
 - One categorical explanatory variable: t-tests or one-way ANOVA
 - Two categorical explanatory variables: two-way ANOVA
 - Continuous explanatory
 - regression

Choosing tests

Choosing between *t*-tests and one-way ANOVA

(E> .	a y	Filter		*	values 🔅	population
1	nass 🚊	sex 🔅		1	10.31	
-1	18.3	females		1		
2		females	Two groups: two-	2	13.07	(0.22)
3		Territores		3	10.33	A
4		females	sample <i>t</i> -test	4	10.52	A
5		females		5	11.67	A
6	0-09873	females		6	7.27	A
7	200055	females females		7	10.31	
9	0.336553	females	Three groups:			
10	Sates	females	•	8	13.07	
1	And Second	females	ANOVA	9	10.33	В
12	18.7	females		10	10.52	В
13	22.6	females		11	11.67	В
14	21.5	females		12	7.27	В
15	21.7	females	Without	13	10.31	c
16	1 <mark>9.9</mark>	females		0.000		2.1
17	10000	females	incroacing	14	13.07	
18	100000	females	increasing	15	10.33	с
19	1	females	– –	16	10.52	C
20		females	Type I error	17	11.67	C
21	Colored.	males males	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18	7.27	С
23		males		100	AVIED.	/.ss

Choosing tests

Choosing between one-way and twoway ANOVA?

vuyn	63 u u			1
	🕑 Untit		Filter	
		winglen		
Response:	1	23.		
	2	23.	1977 - 1972 (1973 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -	
wing lengths	3	18.	ree termineter	Evolor
wing longulo	4	22.	<u></u>	Explar specie
	5	29.	100 100 100 100 100 100 100 100 100 100	cnoci
	6	22.	200 - 1000	speci
	7	24.	5 F.flappa	
	8	26.	.3 F.flappa	
	9	20.	.6 F.flappa	
	10	23.	9 F.flappa	
	11	26.	5 F.flappa	
	12	24.	.7 F.flappa	
	13	28.	.3 F.flappa	
	14	22.	3 F.flappa	
	15	21.	.8 F.flappa	
	16	30.	.0 F.flappa	
	17	21.	5 F.flappa	
	18	20.	1 F.flappa	
	19	24.	.3 F.flappa	
	20	27.	.2 F.flappa	
	21	28.	6 F.concocti	
	22	17.	2 F.concocti	
	23	20.	4 F.concocti	
	24	21.	9 F.concocti	
	25	26.	.3 F.concocti	
	26	77		

Explanatory: species

Showing 1 to 26 of 40 entries

Choosing tests Choosing between one-way and twoway ANOVA?

What if we have two explanatory variables?

- Two one-way ANOVAs?? NO
- A Two-way ANOVA YES
- Note: tidy data format

lect 0	80 two-way		butter ×
-	winglen	spp o	region 🗧
1	23.6	F.flappa	south
2	23.3	F.flappa	south
3	18.2	F.flappa	south
4	22.6	F.flappa	south
5	29.3	F.flappa	south
6	22.2		
7	24.5	Expl	anato
8	26.3	-	
9	20.6	spec	les
10	23.9	roaid	n
11	26.5	regio	JH
12	24.7	F.flappa	north
13	28.3	F.flappa	north
14	22,3	F.flappa	north
15	21.8	F.flappa	north
16	30.0	F.flappa	north
17	21.5	F.flappa	north
18	20.1	F.flappa	north
19	24.3	F.flappa	north
20	27.2	F.flappa	north
21	28.6	F.concocti	south
22	17.2	F.concocti	south
23	20,4	F.concoctí	south
24	21.9	F.concocti	south

Two-way ANOVA Assumptions

Same as for one-way ANOVA

- Normality and 'homoscedascity' of residuals
- Common sense
- Check after ANOVA using the \$residuals variable and diagnostic plots (as we did after one-way ANOVA)

Two-way ANOVA Example

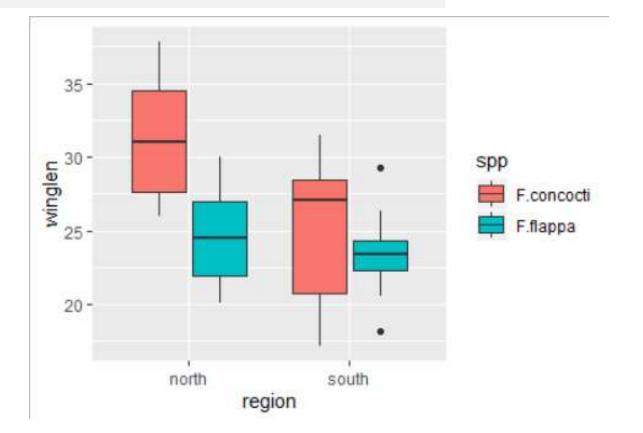
Response: wing lengths Explanatory variables: region: two levels spp: two levels

	🔊 🖓 Fi	lter	
^	winglen	spp 🔅	region
1	23.6	F.flappa	south
2	23.3	F.flappa	south
3	18.2	F.flappa	south
4	22.6	F.flappa	south
5	29.3	F.flappa	south
6	22.2	F.flappa	south
7	24.5	F.flappa	south
8	26.3	F.flappa	south
9	20.6	F.flappa	south
10	23.9	F.flappa	south
11	26.5	F.flappa	north
12	24.7	F.flappa	north
13	28.3	F.flappa	north
14	22.3	F.flappa	north
15	21.8	F.flappa	north
16	30.0	F.flappa	north
17	21.5	F.flappa	north
18	20.1	F.flappa	north
19	24.3	F.flappa	north
20	27.2	F.flappa	north
21	28.6	F.concocti	south
22	17.2	F.concocti	south
23	20.4	F.concoctí	south
24	21.9	F.concocti	south

Two-way ANOVA example What does it test?

The null hypotheses here are:

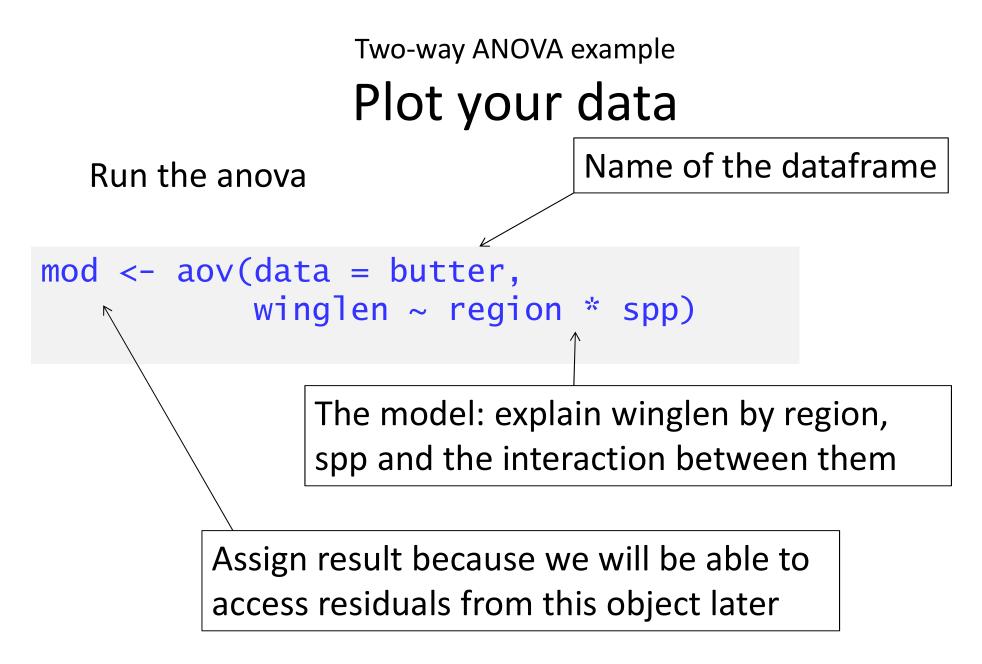
- mean of *F.flappa* (averaged over the regions) = mean of *F.concocti* (averaged over the regions),
- 2. mean of north (averaged over the spp) = mean of south (averaged over the spp) and
- 3. the effects of the two factors are independent.


Two-way ANOVA example Reading in and examining the structure of the data

```
butter <- read.table("../data/butterf.txt", header=T)
glimpse(butter)
Observations: 40
Variables: 3
$ winglen <dbl> 23.6, 23.3, 18.2, 22.6, 29.3, 22.2, 24.5, 26.3, 20.6, 23.9...
$ spp <fct> F.flappa, F.flappa, F.flappa, F.flappa, F.flappa, F.flappa, F.flappa...
$ region <fct> south, south, south, south, south, south, south, south, south, so...
```

Assumptions Common sense Can be checked after analysis Two-way ANOVA example

Plot your data

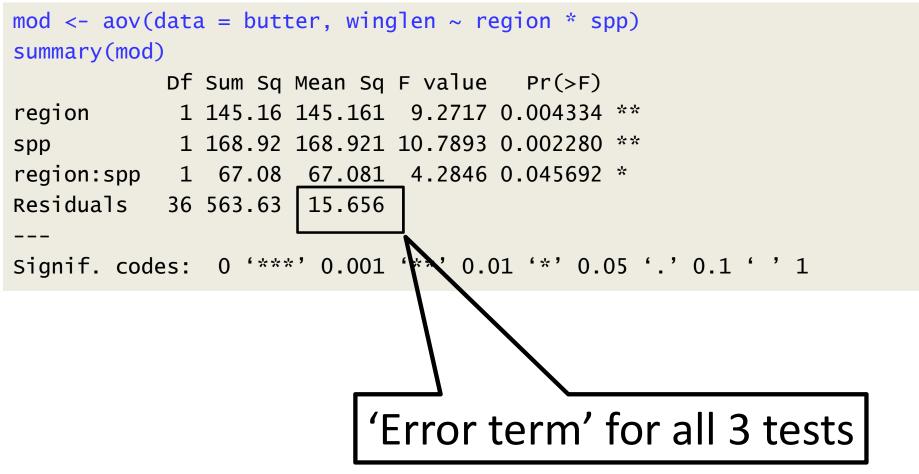

Plot your data: roughly – perhaps..

Two-way ANOVA example **Plot your data**

Sumarise

buttersum # A tibble: 4×7 # Groups: region [2] region spp mean median sd n se <fct> <fct> <dbl> <dbl> <dbl> <int> <dbl> 1 north F.concocti 31.4 31.0 4.28 10 1.35 2 north F.flappa 24.7 24.5 3.27 10 1.03 3 south F.concocti 25.0 27.0 4.96 10 1.57 4 south F.flappa 23.4 23.5 3.01 10 0.953

Two-way ANOVA example Understanding the test output


1. There is an effect of region (difference between regions)

- 2. There is an effect of species (difference between species)
- 3. There is an interaction between region and species.....

Two-way ANOVA example Understanding the test output

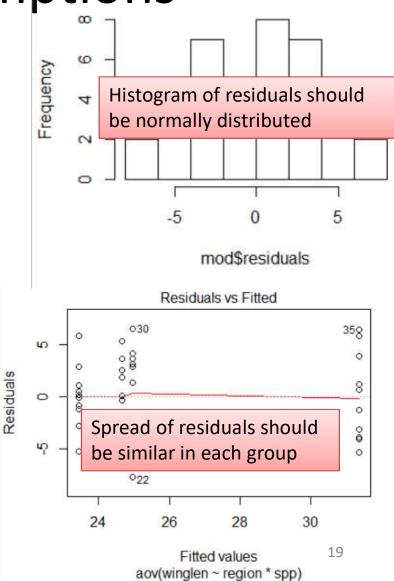
Total d.f. is no. of values - 1:40 - 1 = 39region d.f. is no. regions - 1:2 - 1 = 1spp d.f. is no. spp - 1:2 - 1 = 1Interaction d.f. is region d.f. * spp d.f. :1* 1 = 1Residual d.f. is total d.f. - all other d.f.:39 - 1 - 1 - 1 = 36

Two-way ANOVA example Understanding the test output

Two-way ANOVA example Checking Assumptions

- Common sense

- response should be continuous
- No/few repeats
- Plot the residuals
- Using a test in R


Two-way ANOVA Checking Assumptions

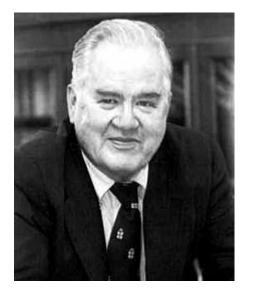
Residuals are calculated for you already!

hist(mod\$residuals)
shapiro.test(mod\$residuals)

Shapiro-Wilk normality test

data: mod\$residuals
W = 0.97306, p-value = 0.4474
plot(mod, which=1)

Two-way ANOVA example Reporting the result


Reporting the result: "significance, direction, magnitude"

There was a significant difference between the species (ANOVA: F = 10.79; d.f. = 1,36; p = 0.002) and between the regions (F = 9.27; d.f. = 1,36; p = 0.004). However, there was also a significant interaction between region and species (F = 4.28; d.f. = 1,36; p = 0.046)

What about direction and magnitude??

Two-way ANOVA example Reporting the result: Post-hoc?

Post-hoc test e.g., Tukey

John Wilder Tukey

Wild Turkey

Wild Turkey

Two-way ANOVA example Reporting the result

Which means differ? Post-hoc test needed e.g., Tukey

3 parts to the output. First two parts for region and spp

```
TukeyHSD(mod)
 Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = winglen ~ region * spp, data = butter)
$region
             diff
                        lwr
                                  upr
                                          p adj
south-north -3.81 -6.347658 -1.272342 0.004334
$spp
                     diff
                                lwr
                                                   p adj
                                           upr
F.flappa-F.concocti -4.11 -6.647658 -1.572342 0.0022796
```

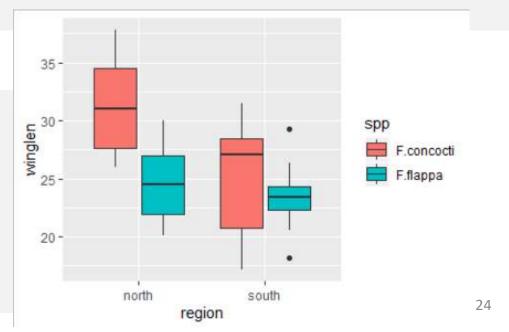
Two-way ANOVA example Reporting the result

Which means differ? Post-hoc test needed e.g., Tukey

3 parts to the output. Third part for the interaction

\$`region:spp`

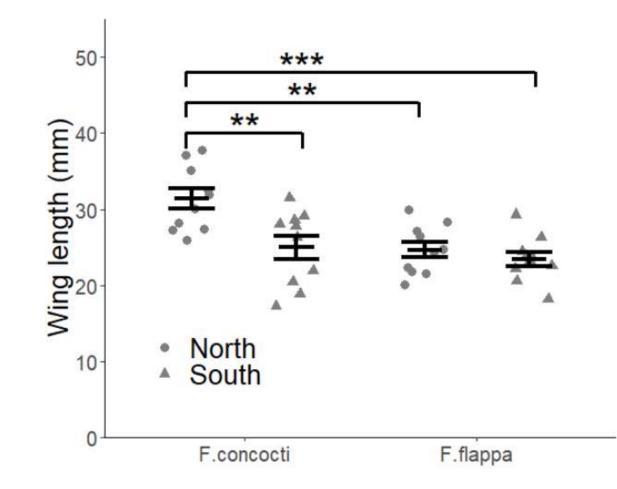
	diff	lwr	upr	p adj
<pre>south:F.concocti-north:F.concocti</pre>	-6.40	-11.165769	-1.634231	0.0048102
north:F.flappa-north:F.concocti	-6.70	-11.465769	-1.934231	0.0030099
south:F.flappa-north:F.concocti	-7.92	-12.685769	-3.154231	0.0004123
north:F.flappa-south:F.concocti	-0.30	-5.065769	4.465769	0.9982343
south:F.flappa-south:F.concocti	-1.52	-6.285769	3.245769	0.8257284
south:F.flappa-north:F.flappa	-1.22	-5.985769	3.545769	0.9004525

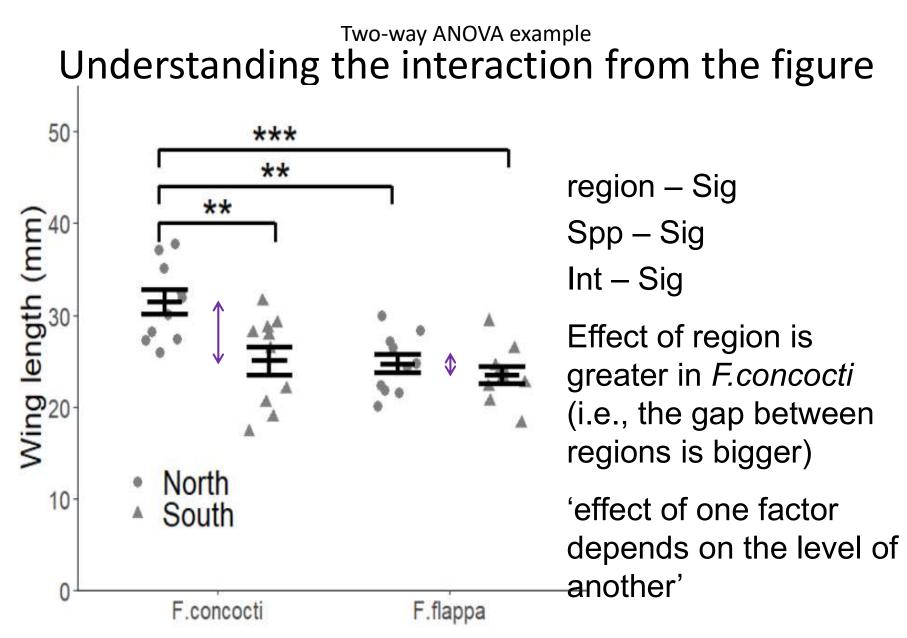

Two-way ANOVA example Reporting the result: direction and magnitude

\$`region:spp`

south:F.concocti-north:F.concocti
north:F.flappa-north:F.concocti
south:F.flappa-north:F.concocti
north:F.flappa-south:F.concocti
south:F.flappa-north:F.concocti

diff	lwr	upr	p adj
-6.40	-11.165769	-1.634231	<mark>0.0048102</mark>
-6.70	-11.465769	-1.934231	<mark>0.0030099</mark>
-7.92	-12.685769	-3.154231	<mark>0.0004123</mark>
-0.30	-5.065769	4.465769	0.9982343
-1.52	-6.285769	3.245769	0.8257284
-1.22	-5.985769	3.545769	0.9004525

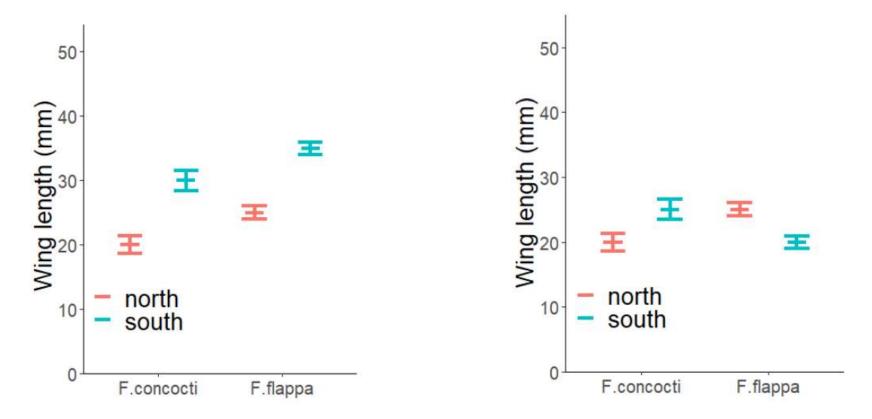

buttersum	
# A tibble: 4 x 7	
<pre># Groups: regio</pre>	n [2]
region spp	mean
<fct> <fct></fct></fct>	<dbl></dbl>
1 north F.concoc	ti 31.4
2 north F.flappa	24.7
3 south F.concoc	ti 25.0
4 south F.flappa	23.4

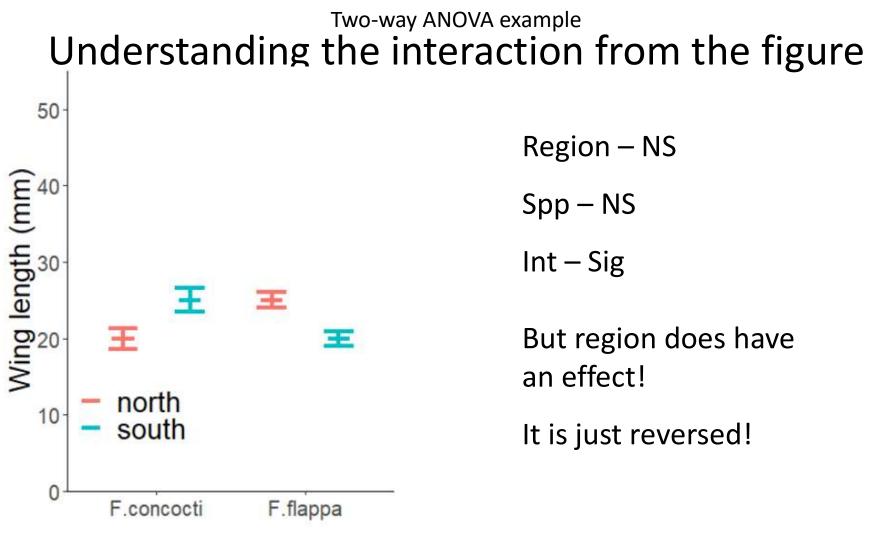


Two-way ANOVA example Reporting the result: direction and magnitude

F.concocti had significantly longer wings than *F.flappa* (ANOVA: F = 10.79; d.f. = 1,36; p = 0.002) and individuals were significantly bigger in the North than the South (F = 9.27; d.f. = 1,36; p = 0.004). However, there was also a significant interaction between region and species (F = 4.28; d.f. = 1,36; p = 0.046) with a significant difference between regions for *F.concocti* (Tukey Honest Significant difference: p = 0.005) but not for *F.flappa*. (Figure 1).

Two-way ANOVA example Reporting the result: figure




Two-way ANOVA example Understanding the interaction from the figure

Some other possible results

No interaction:Gap the same

Interaction: Gap the reversed

If you have a significant interaction, interpret main effects with care. Look at the Post-hoc test

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain the rationale behind ANOVA and complete a partially filled ANOVA table (MLO 1 and 4)
- Read in data formatted for other statistical packages (MLO 3)
- Apply (appropriately), interpret and evaluate the legitimacy of, two-way ANOVA in R (MLO 2, 3 and 4)
- Explain the meaning of a significant interaction (MLO 4)
- Summarise and illustrate with appropriate figures test results scientifically (MLO 3 and 4)
- Use RStudio projects (MLO 4)